skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nephew, Kenneth P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. Significance:The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies. 
    more » « less
  2. Periods of social instability can elicit adaptive phenotypic plasticity to promote success in future competition. However, the underlying molecular mechanisms have primarily been studied in captive and laboratory-reared animals, leaving uncertainty as to how natural competition among free-living animals affects gene activity. Here, we experimentally generated social competition among wild, cavity-nesting female birds (tree swallows,Tachycineta bicolor). After territorial settlement, we reduced the availability of key breeding resources (i.e., nest boxes), generating heightened competition; within 24 h we reversed the manipulation, causing aggressive interactions to subside. We sampled females during the peak of competition and 48 h after it ended, along with date-matched controls. We measured transcriptomic and epigenomic responses to competition in two socially relevant brain regions (hypothalamus and ventromedial telencephalon). Gene network analyses suggest that processes related to energy mobilization and aggression (e.g., dopamine synthesis) were up-regulated during competition, the latter of which persisted 2 d after competition had ended. Cellular maintenance processes were also down-regulated after competition. Competition additionally altered methylation patterns, particularly in pathways related to hormonal signaling, suggesting those genes were transcriptionally poised to respond to future competition. Thus, experimental competition among free-living animals shifts gene expression in ways that may facilitate the demands of competition at the expense of self-maintenance. Further, some of these effects persisted after competition ended, demonstrating the potential for epigenetic biological embedding of the social environment in ways that may prime individuals for success in future social instability. 
    more » « less